網站首頁 工作範例 辦公範例 個人範例 黨團範例 簡歷範例 學生範例 其他範例 專題範例

數位電路實訓心得體會_數位電路實習總結報告(通用3篇)

欄目: 實習心得體會 / 釋出於: / 人氣:3.49K

數位電路實訓心得體會_數位電路實習總結報告 篇1

數位電路又可稱為邏輯電路,通過與(&),或(>=1),非(o),異或(=1),同或(=)等閘電路來實現邏輯。

數位電路實訓心得體會_數位電路實習總結報告(通用3篇)

邏輯電路又可分為組合邏輯電路和時序邏輯電路。組合邏輯電路是指在某一時刻的輸出狀態僅僅取決於在該時刻的輸入狀態,而與電路過去的狀態無關。

TTL和CMOS電路:TTL是電晶體輸入電晶體輸出邏輯的縮寫,它用的電源為5V。CMOS電路是由PMOS管和NMOS管(源極一般接地)組合而成,電源電壓範圍較廣,從1.2V-18V都可以。

CMOS的推輓輸出:輸出高電平時N管截止,P管導通;輸出低電平時N管導通,P管截止。輸出電阻小,因此驅動能力強。

CMOS門的漏極開路式:去掉P管,輸出端可以直接接在一起實現線與功能。如果用CMOS管直接接在一起,那麼當一個輸出高電平,一個輸出低電平時,P管和N管同時導通,電流很大,可能燒燬管子。單一的管子導通,只是溝道的導通,電流小,如果兩個管子都導通,則形成電流回路,電流大。

輸入輸出高阻:在P1和N1管的漏極再加一個P2管和N2管,,當要配置成高阻時,使得P2和N2管都不導通,從而實現高阻狀態。

靜態電流:輸入無狀態反轉(高低電平變換)情況下的電流。

動態電流:電路在邏輯狀態切換過程中產生的功耗,包括瞬間導通功耗和負載電容充放電功耗兩部分。閘電路的上升邊沿和下降邊沿是不可避免的,因此在輸入電壓由高到低或由低變高的過程中到達Vt附近時,兩管同時導通產生尖峰電流。該損耗取決於輸入波形的好壞(CMOS工藝),電源電壓的大小和輸入訊號的重複頻率。電路的負載電容的充放電也是很大的一部分。

ESD保護:Electro-Staticdischarge, 靜電放電。

輸入輸出緩衝器:是緩衝器,不是快取器,就是一個CMOS閘電路。輸入緩衝器的作用主要是1,TTL/CMOS電平轉換介面;2,過濾外部輸入訊號噪聲。輸出緩衝器的作用是增加驅動能力。

配成輸入模式不一定比輸出模式更省電:輸入模式時輸入緩衝器會開啟,而輸出模式時輸出緩衝器會開啟。

TESEO上GPIO資料暫存器讀寫的注意點:

配置成普通GPIO時,如果配置成輸出口,那麼寫資料暫存器會直接輸出該電平,讀資料暫存器實際就是讀鎖存器中最後一次被寫入的值。如果被配置成輸入口,並且上下拉使能的話,那麼寫資料暫存器就是配置上下拉電阻,而讀資料暫存器就是讀輸入引腳的緩衝器,返回的是該引腳的當前電平狀況。有些平臺會有專門的狀態暫存器,無論當前引腳被配置成輸入還是輸出,讀該專門的狀態暫存器都返回該引腳的當前電平狀況。

引腳的BOOT state是指在上電重啟或硬重啟時引腳的狀態,reset release之後的狀態為reset state,reset state和state有可能不一樣。TESEO的UART0_TX為boot1,該引腳的訊號在上電重啟或硬重啟時會被鎖存,以備reset release時給default register map用。

IO的電源電壓配置:IO引腳歸屬於不同IOring,不同的IO ring可以被輸入不同的電壓。CPU在判決IO的邏輯電平時會和IO ring的電平(乘以高低電平的係數)作比較。

數位電路中的擺幅:輸入擺幅和輸出擺幅。輸入擺幅指的是最低輸入高電平和最高輸入低電平的差值,輸出擺幅指的是最低輸出高電平和最高輸出低電平之間的差值,TTL的擺幅偏小。

在時序邏輯電路里,如果輸入的時鐘停止,那麼整個電路的功耗很低,原因是時序邏輯電路里的很多小單元的輸出是由時鐘驅動的,時鐘停止,基本就是高阻態。如果將整個模組的電斷了,那麼就會更加省電。

猜你感興趣:

串列埠通訊電路,如果將其關掉,一般RX線上會是低電平,如果檢測到高電平,就會產生中斷,這個時候就可以重啟開啟串列埠,但是第一個位元組由於不在串列埠暫存器裡面,因此,資料會丟失。

數位電路實訓心得體會_數位電路實習總結報告 篇2

電路實訓,作為一門實實在在的實訓學科,是電路知識的基礎和依據。它可以幫助我們進一步理解鞏固電路學的知識,激發我們對電路的學習興趣。在大一上學期將要結束之際,我們進行了一系列的電路實訓,從簡單的戴維南定理到示波器的使用,再到迴轉路-----,一共五個實訓,通過這五個實訓,我對電路實訓有了更深刻的瞭解,體會到了電路的神奇與奧妙。

不過說實話在做這次試驗之前,我以為不會難做,就像以前做的實訓一樣,操作應該不會很難,做完實訓之後兩下子就將實訓報告寫完,直到做完這次電路實訓時,我才知道其實並不容易做。它真的不像我想象中的那麼簡單,天真的以為自己把平時的理論課學好就可以很順利的完成實訓,事實證明我錯了,當我走上試驗檯,我意識到要想以優秀的成績完成此次所有的實訓,難度很大,但我知道這個難度是與學到的知識成正比的,因此我想說,雖然我在實訓的過程中遇到了不少困難,但最後的成績還是不錯的,因為我畢竟在這次實訓中學到了許多在課堂上學不到的東西,終究使我在這次實訓中受益匪淺。

下面我想談談我在所做的實訓中的心得體會:

在基爾霍夫定律和疊加定理的驗證實訓中,進一步學習了基爾霍夫定律和疊加定理的應用,根據所畫原理圖,連線好實際電路,測量出實訓資料,經計算實訓結果均在誤差範圍內,說明該實訓做的成功。我認為這兩個實訓的實訓原理還是比較簡單的,但實際操作起來並不是很簡單,至少我覺得那些行行色色的導線就足以把你繞花眼,所以我想說這個實訓不僅僅是對你所學知識掌握情況的考察,更是對你的耐心和眼力的一種考驗。

在戴維南定理的驗證實訓中,瞭解到對於任何一個線性有源網路,總可以用一個電壓源與一個電阻的串聯來等效代替此電壓源的電動勢Us等於這個有源二端網路的開路電壓Uoc

,其等效內阻Ro等於該網路中所有獨立源均置零時的等效電阻。這就是戴維南定理的具體說明,我認為其實質也就是在闡述一個等效的概念,我想無論你是學習理論知識還是進行實際操作,只要抓住這個中心,我想可能你所遇到的續都問題就可以迎刃而解。不過在做這個實訓,我想我們應該注意一下萬用表的使用,

儘管它的操作很簡單,但如果你馬虎大意也是完全有可能出錯的,是你整個的實訓前功盡棄!

在接下來的常用電子儀器使用實訓中,我們選擇了對示波器的使用,我們通過了解示波器的原理,初步學會了示波器的使用方法。在試驗中我們觀察到了在不同頻率、不同振幅下的各種波形,並且通過毫伏表得出了在不同情況下毫伏表的讀數。

我們最後一個實訓做的是一階動態電路的研究,在這個實訓中我們需要測定RL一階電路的零輸入響應,零狀態響應以及全響應,學習電路時間常數的測量方法。因為動態網路的過渡過程是十分短暫的單次變化過程,如果我們選擇用普通示波器過渡過程和測量有關的引數,我們就必須是這種單次變化的過程重複出現。因此我們利用訊號發生器輸出的方波模擬階躍激勵訊號,即利用方波輸出的上升沿作為零狀態響應的正階躍激勵訊號;利用方波的下降沿作為零輸入響應的負階躍激勵訊號。上述是在做此實訓時應注意的,因為如果不使動態網路的過渡過程單次變化重複出現,會使我們所測得的值及其不準確。同時當我們把一個電容和一個電阻串聯到電路中,觀察示波器中所顯示的波形,如果它是週期性變化的,而且近似於鐮刀形,說明對於這個一階動態電路實訓已經基本上掌握!電工實訓心得體會總的來說,通過此次電路實訓,我的收穫真的是蠻大的,不只是學會了一些一起的使用,如毫伏表,示波器等等,更重要的是在此次實訓過程中,更好的培養了我們的具體實訓的能力。又因為在在實訓過程中有許多實訓現象,需要我們仔細的觀察,並且分析現象的原因。特別有時當實訓現象與我們預計的結果不相符時,就更加的需要我們仔細的思考和分析了,並且進行適當的調節。因此電路實訓可以培養我們的觀察能力、動手操做能力和獨立思考能力。所以對於此次電路實訓我覺得很成功,因為我在這次實訓中真的收穫到了很多從課堂上學不到的東西,真的讓我感觸頗深,受益匪淺!

數位電路實訓心得體會_數位電路實習總結報告 篇3

電路實驗,作為一門實實在在的實驗學科,是電路知識的基礎和依據。它可以幫助我們進一步理解鞏固電路學的知識,激發我們對電路的學習興趣。在大一上學期將要結束之際,我們進行了一系列的電路實驗,從簡單的戴維南定理到示波器的使用,再到迴轉路-----,一共五個實驗,通過這五個實驗,我對電路實驗有了更深刻的瞭解,體會到了電路的神奇與奧妙。

不過說實話在做這次試驗之前,我以為不會難做,就像以前做的實驗一樣,操作應該不會很難,做完實驗之後兩下子就將實驗報告寫完,直到做完這次電路實驗時,我才知道其實並不容易做。它真的不像我想象中的那麼簡單,天真的以為自己把平時的理論課學好就可以很順利的完成實驗,事實證明我錯了,當我走上試驗檯,我意識到要想以優秀的成績完成此次所有的實驗,難度很大,但我知道這個難度是與學到的知識成正比的,因此我想說,雖然我在實驗的過程中遇到了不少困難,但最後的成績還是不錯的,因為我畢竟在這次實驗中學到了許多在課堂上學不到的東西,終究使我在這次實驗中受益匪淺。

下面我想談談我在所做的實驗中的心得體會:

在基爾霍夫定律和疊加定理的驗證實驗中,進一步學習了基爾霍夫定律和疊加定理的應用,根據所畫原理圖,連線好實際電路,測量出實驗資料,經計算實驗結果均在誤差範圍內,說明該實驗做的成功。我認為這兩個實驗的實驗原理還是比較簡單的,但實際操作起來並不是很簡單,至少我覺得那些行行色色的導線就足以把你繞花眼,所以我想說這個實驗不僅僅是對你所學知識掌握情況的考察,更是對你的耐心和眼力的一種考驗。

在戴維南定理的驗證實驗中,瞭解到對於任何一個線性有源網路,總可以用一個電壓源與一個電阻的串聯來等效代替此電壓源的電動勢Us等於這個有源二端網路的開路電壓Uoc

,其等效內阻Ro等於該網路中所有獨立源均置零時的等效電阻。這就是戴維南定理的具體說明,我認為其實質也就是在闡述一個等效的概念,我想無論你是學習理論知識還是進行實際操作,只要抓住這個中心,我想可能你所遇到的續都問題就可以迎刃而解。不過在做這個實驗,我想我們應該注意一下萬用表的使用,

儘管它的操作很簡單,但如果你馬虎大意也是完全有可能出錯的,是你整個的實驗前功盡棄!

在接下來的常用電子儀器使用實驗中,我們選擇了對示波器的使用,我們通過了解示波器的原理,初步學會了示波器的使用方法。在試驗中我們觀察到了在不同頻率、不同振幅下的各種波形,並且通過毫伏表得出了在不同情況下毫伏表的讀數。

我們最後一個實驗做的是一階動態電路的研究,在這個實驗中我們需要測定RL一階電路的零輸入響應,零狀態響應以及全響應,學習電路時間常數的測量方法。因為動態網路的過渡過程是十分短暫的單次變化過程,如果我們選擇用普通示波器過渡過程和測量有關的引數,我們就必須是這種單次變化的過程重複出現。因此我們利用訊號發生器輸出的方波模擬階躍激勵訊號,即利用方波輸出的上升沿作為零狀態響應的正階躍激勵訊號;利用方波的下降沿作為零輸入響應的負階躍激勵訊號。上述是在做此實驗時應注意的,因為如果不使動態網路的過渡過程單次變化重複出現,會使我們所測得的值及其不準確。同時當我們把一個電容和一個電阻串聯到電路中,觀察示波器中所顯示的波形,如果它是週期性變化的,而且近似於鐮刀形,說明對於這個一階動態電路實驗已經基本上掌握!

總的來說,通過此次電路實驗,我的收穫真的是蠻大的,不只是學會了一些一起的使用,如毫伏表,示波器等等,更重要的是在此次實驗過程中,更好的培養了我們的具體實驗的能力。又因為在在實驗過程中有許多實驗現象,需要我們仔細的觀察,並且分析現象的原因。特別有時當實驗現象與我們預計的結果不相符時,就更加的需要我們仔細的思考和分析了,並且進行適當的調節。因此電路實驗可以培養我們的觀察能力、動手操做能力和獨立思考能力。所以對於此次電路實驗我覺得很成功,因為我在這次實驗中真的收穫到了很多從課堂上學不到的東西,真的讓我感觸頗深,受益匪淺!